Project 01: Sweep
Components needed:
- Arduino Uno board
- breadboard
- 5 jumper wires
- Servo motor
- Capacitor - 100 µF
/*
Servo 01: Sweep
Source: Code adapted from Adafruit Arduino - Lesson 14. Servo Motors
(https://learn.adafruit.com/adafruit-arduino-lesson-14-servo-motors)
*/

#include <Servo.h> // indicate that we want to use the Servo library

Servo servo; // initialize the Servo library

int servoPin = 9; // control lead of servo connected to pin 9

int angle = 0; // set the initial servo position in degrees

void setup() {
 servo.attach(servoPin); // indicate that servo motor is attached to the servoPin
}

void loop() {
 for(angle = 0; angle < 180; angle++) // counts up from 0 to 180 (max angle) using the variable "angle"
 {
 servo.write(angle); // set the new angle
 delay(15); // delay between the steps
 }

 for(angle = 180; angle > 0; angle--) // counts down from 0 to 180 (max angle) using the variable "angle"
 {
 servo.write(angle); // set the new angle
 delay(15); // delay between the steps
 }
}
Project 02: Potentiometer
Components needed:
- Arduino Uno board
- breadboard
- 6 jumper wires
- Servo motor
- Capacitor - 100 µF
- 10k potentiometer
Servo 02 : Potentiometer

#include <Servo.h> // indicate that we want to use the Servo library

Servo servo; // initialize the Servo library

int servoPin = 9; // control lead of servo connected to pin 9
int potPin = 0; // analog pin used to connect the potentiometer

int val; // variable to read the value from the analog pin
int angle; // variable for the angle that we will calculate

void setup() {
 servo.attach(servoPin); // indicate that servo motor is attached to the servoPin
}

void loop() {
 val = analogRead(potPin); // reads the value of the potentiometer (value between 0 and 1023)
 angle = map(val, 0, 1023, 0, 180); // scale that value to use it with the servo (value between 0 and 180)
 servo.write(angle); // sets the servo position according to the scaled value
 delay(15); // waits for the servo to get there
}
Project 03: Serial Monitor

Components needed:

- Arduino Uno board
- breadboard
- 5 jumper wires
- Servo motor
- Capacitor - 100 μF
/*
Servo 03 : Serial Monitor
*/

#include <Servo.h> // indicate that we want to use the Servo library

Servo servo; // initialize the Servo library
int servoPin = 9; // control lead of servo connected to pin 9
int angle; // establish the angle variable (to be used later)

void setup() {
 servo.attach(servoPin); // indicate that servo motor is attached to the servoPin
 Serial.begin(9600); // initialize the serial communication

 Serial.println("Type an angle (0-180) into the box above, "); // print two lines of instructions
 Serial.println("then click [send] or press [return] ");
 Serial.println(); // and then a blank line
}

void loop() {
 while (Serial.available() > 0) // check to see if incoming data is available
 {
 angle = Serial.parseInt(); // if it is, we'll use parseInt() to pull out any numbers
 angle = constrain(angle, 0, 180); // make sure the number is between 0 & 180

 Serial.print("Setting angle to "); // print a message in the serial monitor with the new angle
 Serial.println(angle);

 servo.write(angle); // move the servo to that angle
 }
}
Ideas to Build On

Build a simple knock lock that would open the door after knocking on a piezo the correct number of times! See page 9 of this document. Warning – this one is a bit finicky!

Build a prototype of the automatic sunglasses.
This project uses an Arduino Mini – can you adjust what is found on the website with the materials you have on hand on? Remember, this will just be a prototype!

Build a simple version of this servo “sunflower” – the motor rotates to follow the light hitting two photoresistors.
https://create.arduino.cc/projecthub/Rick_Findus/arduino-sunflower-c4fd84?ref=tag&ref_id=servo&offset=3

Learn More

Want to learn more about how servo motors, Arduino Libraries and capacitors work? Try these resources:

https://learn.adafruit.com/adafruit-arduino-lesson-14-servo-motors?view=all

https://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-libraries

With corrections found here: https://forum.arduino.cc/index.php?topic=175831.0

How Does a Capacitor Work? Øyvind Nydal Dahl.

https://howtomechatronics.com/how-it-works/how-servo-motors-work-how-to-control-servos-using-arduino/

Sparkfun SIK Experiment Guide for Arduino V4.0 – Circuit 3A: Servo Motors.
https://learn.sparkfun.com/tutorials/sparkfun-inventors-kit-experiment-guide---v40/circuit-3a-servo-motors

Sparkfun Capacitor Tutorial. https://learn.sparkfun.com/tutorials/capacitors

Extra Project: Knock Lock

Components needed:

- Arduino Uno board
- breadboard
- 14 jumper wires
- Servo motor
- Capacitor - 100 µF
- Push button
- Piezo
- 3 x LEDs (green, yellow, red)
- 3 x 220 ohm resistor
- 10k ohm resistor
- 1 million ohm resistor
#include <Servo.h>
Servo servo9; // Pin connected to servo mpo
const int piezo = A0; // Pin connected to piezo
const int switchPin = 2; // Pin connected to servo
const int yellowLed = 3; // Pin connected to yellow LED
const int greenLed = 4; // Pin connected to green LED
const int redLed = 5; // Pin connected to red LED
int knockVal; // Value for the knock strength
int switchVal;
const int quietKnock = 10; // Set min value that will be accepted
const int loudKnock = 100; // Set max value that will be accepted
boolean locked = false; // A true or false variable
int numberOfKnocks = 0; // Value for number of knocks

void setup() {
 servo9.attach(9);
 pinMode(yellowLed, OUTPUT); // Set LED pins as outputs
 pinMode(greenLed, OUTPUT);
 pinMode(redLed, OUTPUT);
 pinMode(switchPin, INPUT); // Set servo pin as input
 Serial.begin(9600);
 digitalWrite(greenLed, HIGH); // Green LED is lit when the
 // sequence is correct
 servo9.write(0);
 Serial.println("The box is unlocked!");
}

void loop() {
 if (locked == false) {
 switchVal = digitalRead(switchPin);
 if (switchVal == HIGH) {
 locked = true;
 digitalWrite(greenLed, LOW);
 digitalWrite(redLed, HIGH);
 servo9.write(90);
 Serial.println("The box is locked!");
 delay(1000);
 }
 }
 if (locked == true) {
 knockVal = analogRead(piezo); // Knock value is read by analog pin
 if (numberOfKnocks < 3 && knockVal > 0) {
 if (checkForKnock(knockVal) == true) { // Check for correct
// number of knocks
numberOfKnocks++;

Serial.print(3 - numberOfKnocks);
Serial.println(" more knocks to go");

if (numberOfKnocks >= 3) { // If 3 valid knocks are detected,
 // the servo moves
 locked = false;
servo9.write(0);
delay(20);
digitalWrite(greenLed, HIGH);
digitalWrite(redLed, LOW);
Serial.println("The box is unlocked!");
numberOfKnocks = 0; // resets number of knocks to 0
}

}

boolean checkForKnock(int value) { // Checks knock value
 if (value > quietKnock && value < loudKnock) { // Value needs to be
 // between these
digitalWrite(yellowLed, HIGH);
delay(50);
digitalWrite(yellowLed, LOW);
Serial.print("Valid knock of value ");
Serial.println(value);
 return true;
 }
else { // If value is false then send this to the IDE serial
 Serial.print("Bad knock value ");
Serial.println(value);
return false;
 }
}