Project 01: Hello, World!

Components needed:
- Arduino Uno board
- breadboard
- 16 jumper wires
- 16x2 LCD screen
- 10k potentiometer
/*/
LCD 01 : Hello World!
Source: Code adapted from the Arduino.cc Hello World Tutorial
*/

#include <LiquidCrystal.h> // indicate that we want to use the Liquid Crystal library

// initialize the library by associating any needed LCD interface pin
// with the Arduino pin number that it is connected to
// RS EN D4 D5 D6 D7
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

void setup() {
 lcd.begin(16, 2); // set up the LCD's number of columns and rows
 lcd.print("hello, world!"); // print a message to the LCD
}

void loop() {
 lcd.setCursor(0, 1); // set the cursor to column 0, row 1 (row 1 is the second row as counting begins with 0)
 lcd.print(millis() / 1000); // print the number of seconds since reset
}
Project 02: Weather Station

Components needed:
- Arduino Uno board
- breadboard
- 19 jumper wires
- 16x2 LCD screen
- 10k potentiometer
- DHT11 temperature and humidity sensor
/*
LCD 02 : Weather Station
Source: Code adapted from the Arduino Project Handbook (Geddes, 2016) and ladyada's DHT humidity/temperature sensors testing sketch (https://learn.adafruit.com/dht?view=all)
*/

#include <LiquidCrystal.h> // call the Liquid Crystal library
#include <DHT.h> // call the DHT library

const int DHTPIN = 3; // pin connected to DHT
const int DHTTYPE = DHT11; // set the type of sensor

// initialize the Liquid Crystal library by associating any needed LCD interface pin
// with the Arduino pin number that it is connected to
//
// RS E D4 D5 D6 D7
LiquidCrystal lcd(7, 8, 9, 10, 11, 12);

// initialize the DHT library by telling it the pin and sensor type
// pin sensor type
DHT dht(DHTPIN, DHTTYPE);

void setup() {
 dht.begin(); // start the DHT sensor
 lcd.begin(16, 2); // set up the LCD's number of columns and rows
}

void loop() {
 float h = dht.readHumidity(); // get a humidity reading
 float t = dht.readTemperature(); // get a temperature reading
 t = t * 9 / 5 + 32; // change temp reading from Celsius to Fahrenheit

 if (isnan(t) || isnan(h)) { // check that DHT sensor is working
 lcd.setCursor(0, 0); // set the cursor to column 0, row 0
 lcd.print("Failed to read from DHT"); // if DHT is not working, display this
 } else { // otherwise show the readings on the screen
 lcd.clear();
 lcd.setCursor(0, 0); // set the cursor to column 0, row 0

 // display humidity reading
 lcd.print("Humidity: ");
 lcd.print(h);
 lcd.print("% ");
 lcd.setCursor(0, 1); // set the cursor to column 0, row 1

 // display temperature reading
 lcd.print("Temp: ");
 lcd.print(t);
 lcd.print("F ");
 }
 delay(1000); // stabilizes the LCD screen
}
Ideas to Build On

Build an electronic Magic 8 Ball - ask a question and get an answer when you gently tap or shake your breadboard!
See page 6 of this document.

Try to beat a reaction timer - how quickly can you press a button when a RGB LED flashes red?
See page 9 of this document.
https://learn.sparkfun.com/tutorials/sik-experiment-guide-for-arduino---v33/experiment-12-driving-a-motor

Build your own time clock, complete with buttons to set the hour and minute!
Note: The diagram for this project is a bit confusing – it make take some critical thinking to come up with your own setup.
https://www.hackster.io/Annlee_Fores/simple-arduino-digital-clock-without-rtc-7d4303

Learn More

Want to learn more about how LCD screens and Arduino Libraries work? Try these resources:

https://learn.adafruit.com/arduino-tips-tricks-and-techniques/arduino-libraries

Adafruit Character LCDs OverView. Lady Ada and Tony DiCola.
https://learn.adafruit.com/character-lcds?view=all

Sparkfun SIK Experiment Guide for Arduino V4.0 – Circuit 4A: LCD “Hello World!”.
Extra Project: Magic 8 Ball

Components needed:
- Arduino Uno board
- breadboard
- 19 jumper wires
- 16x2 LCD screen
- 10k potentiometer
- 220 ohm resistor
- Tilt switch (four leg)
/*
LCD Extra Project: Magic 8 Ball
Source: Code adapted from the Arduino Projects Book (Fitzgerald, Shiloh & Igoe, 2012)
and Arduino Project Handbook (Geddes, 2016)
*/

#include <LiquidCrystal.h>
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);

const int switchPin = 6;
int switchState = 0;
int prevSwitchState = 0;
int reply;

void setup() {
 // put your setup code here, to run once:
 lcd.begin(16, 2);
pinMode(switchPin, INPUT);
lcd.print("Ask the");
lcd.setCursor(0, 1);
lcd.print("Crystal Ball!");

 // if analog input pin 0 is unconnected, random analog
 // noise will cause the call to randomSeed() to generate
 // different seed numbers each time the sketch runs.
 // randomSeed() will then shuffle the random function.
 randomSeed(analogRead(0));
}

void loop() {
 // put your main code here, to run repeatedly:
 switchState = digitalRead(switchPin);

 if (switchState != prevSwitchState) {
 if (switchState == LOW) {
 reply = random(8);
 lcd.clear();
lcd.setCursor(0, 0);
lcd.print("The ball says:");
lcd.setCursor(0, 1);
 switch(reply){
 case 0:
lcd.print("Yes");
 break;
 case 1:
 }}}}
lcd.print("Most likely");
break;
case 2:
lcd.print("Certainly");
break;
case 3:
lcd.print("Outlook good");
break;
case 4:
lcd.print("Unsure");
break;
case 5:
lcd.print("Ask a Librarian");
break;
case 6:
lcd.print("Doubtful");
break;
case 7:
lcd.print("No");
break;
}
}
}

prevSwitchState = switchState;
}
Extra Project: Reaction Timer

Components needed:
- Arduino Uno board
- breadboard
- 25 jumper wires
- 16x2 LCD screen
- 10k potentiometer
- 4 x 220 ohm resistors
- Piezo buzzer
- RGB LED (common cathode)
- Push button
/*
LCD Extra Project : Reaction Timer
Source: Code adapted from the Arduino Project Handbook (Geddes, 2016)
Originally created by Steven De Lannoy
http://www.wingbike.nl
Used a RGB LED with a common anode (3 cathodes: R, G, B)
*/

#include <LiquidCrystal.h>

LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
int LEDR = 8; // Pin connected to red LED
int LEDB = 6; // Pin connected to blue LED
int LEDGr = 7; // Pin connected to green LED
int Button = 9; // Pin connected to pushbutton
int COLOR; // Variable color
int Beep;
int PSE; // Variable pause
int TME; // Time
int RTME = 0; // Reaction time

void setup() {
 lcd.begin(16, 2);
 pinMode(LEDR, OUTPUT); // Set LED pins as output
 pinMode(LEDB, OUTPUT);
 pinMode(LEDGr, OUTPUT);
 pinMode(Button, INPUT); // Set pushbutton as input
 digitalWrite(LEDR, LOW); // Switch on all LED colors
 digitalWrite(LEDB, LOW);
 digitalWrite(LEDGr, LOW);
}

void loop() {
 lcd.clear(); // Clear screen
 lcd.print("Hold Button to"); // Display message on LCD screen
 lcd.setCursor(0, 1); // Move to second line
 lcd.print("start.");
 while (digitalRead(Button) == LOW) { // Test does not start until
 tone(13, 1200, 30);
 delay(1400);
 noTone(13);
 }
 lcd.clear();
 digitalWrite(LEDR, HIGH); // Switch off start light
 digitalWrite(LEDB, HIGH);
 digitalWrite(LEDGr, HIGH);
 randomSeed(analogRead(0)); // Random noise from pin 0
 COLOR = random(1, 4); // Generate random color
 PSE = random(500, 1200); // Set random pause duration between lights
 // Repeat this loop while color is green or blue AND pushbutton
 // is held
 while (COLOR != 1 && digitalRead(Button) == HIGH) {
 digitalWrite(LEDGr, HIGH);
 digitalWrite(LEDB, HIGH);
 delay(PSE);
 randomSeed(analogRead(0));
 Beep = random(1, 4); // Select random beep from buzzer
 // (buzzer beeps 1 in 3 times)
 PSE = random(750, 1200); // Select random pause duration between
 // lights (to increase surprise effect)
 if (Beep == 1) {
 tone(13, 1600, 350);
delay(750);
noTone(13);
}
if (COLOR == 2) {
digitalWrite(LEDGr, LOW);
}
if (COLOR == 3) {
digitalWrite(LEDB, LOW);
}
delay(PSE);
randomSeed(analogRead(0));
COLOR = random(1, 4); // Select random color

// Execute this loop if color is red
if (COLOR == 1 && digitalRead(Button) == HIGH) {
digitalWrite(LEDGr, LOW);
digitalWrite(LEDB, LOW);
delay(50);
TME = millis(); // Record time since program has started
digitalWrite(LEDGr, HIGH);
while (digitalRead(Button) == HIGH) { // Runs until button is
// released, recording the
// reaction time

delay(1);
}
lcd.display();
RTME = millis() - TME; // Reaction time in milliseconds
lcd.print("Reaction Time:"); // Display on LCD screen
lcd.setCursor(0, 1);
lcd.print(RTME);
}

// Execute if color is NOT red but the pushbutton is released
if (COLOR != 1) {
lcd.print("Released too");
lcd.setCursor(0, 1); // Move to second line
lcd.print("soon");
tone(13, 3000, 1500);
delay(500);
noTone(13);
}

// Test does not restart until the button is pushed once
while (digitalRead(Button) == LOW) {
delay(10);
}
digitalWrite(LEDGr, LOW); // Reset all lights to begin again
digitalWrite(LEDGr, LOW);
digitalWrite(LEDB, LOW);
lcd.clear();
lcd.print("Hold Button to");
lcd.setCursor(0, 1);
lcd.print("start.");
int Time = 0;
delay(1000);